CURVED BEAMS

The theory of beam bending, presented in Chapter 7, is limited to straight
beams or to beams that are mildly curved relative to their depth. However, if the ratio of
the radius of curvature to depth for a beam is less than 5, the flexure formula (Eq. 7.1) is
generally inadequate for describing the flexural stresses in the beam. For beams that are
curved in such a manner, the theory of bending must also include consideration of the cur-
vature. Such a theory is developed in this chapter based on mechanics of materials meth-
ods. Two important differences with respect to straight-beam bending result. First, the
flexural stress distribution in a curved beam is nonlinear. Based on this result the neutral
axis will not coincide with the centroidal axis of the cross section when the beam is sub-
jected to pure bending. Second, a curved beam carries radial stresses as a consequence of
the internal bending moment. These radial stresses have important design implications for
thin-wall cross sections and for materials (such as wood and unidirectional composites)
with relatively low tensile strength in the radial direction.

9.1 INTRODUCTION

Timoshenko and Goodier (1970) presented a solution based on the theory of elasticity for
the linear elastic behavior of curved beams of rectangular cross sections for the loading
shown in Figure 9.1a. They obtained relations for the radial stress o,,, the circumferential
stress Ogg, and the shear stress 0,9 (Figure 9.15). However, most curved beams do not

(@) ®)

FIGURE 9.1 Rectangular section curved beam. {a) Curved beam loading. (b} Stress compo-
nents.

Page 1


154535
Rectangle

154535
Rectangle

154535
Rectangle


CURVED BEAMS

have rectangular cross sections. Therefore, in Section 9.2 we present an approximate
curved beam solution that is generally applicable to all symmetrical cross sections. This
solution is based on two simplifying assumptions: 1. plane sections before loading remain
plane after loading and 2. the radial stress &,, and shear stress 0,4 are sufficiently small so
that the state of stress is essentially one dimensional. The resulting formula for the circum-
ferential stress 0 gg is the curved beam formula.

9.2 CIRCUMFERENTIAL STRESSES
IN A CURVED BEAM

Consider the curved beam shown in Figure 9.2a. The cross section of the beam has a plane
of symmetry and the polar coordinates (r, 8) lie in the plane of symmetry, with origin at 0,
the center of curvature of the beam. We assume that the applied loads lie in the plane of
symmetry. A positive moment is defined as one that causes the radius of curvature at each
section of the beam to increase in magnitude. Thus, the applied loads on the curved beams
in Figures 9.1 and 9.2a cause positive moments. We wish to determine an approximate
formula for the circumferential stress distribution o gg on section BC. A free-body diagram
of an element FBCH of the beam is shown in Figure 9.2b. The normal traction N, at the
centroid of the cross section, the shear V, and moment M, acting on face FH are shown in
their positive directions. These forces must be balanced by the resultants due to the normal

M

P, m_o h

- g} db,
e
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g, =0, Centroidal
; surface
o L
= % Plane of
ay,=d, symmetry
C

(b)
FIGURE 9.2 Curved beam.
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CIRCUMFERENTIAL STRESSES IN A CURVED BEAM

stress Ogq and shear stress 0,4 that act on face BC. The effect of the shear stress ¢,4 on
the computation of 0y is usually small, except for curved beams with very thin webs.
However, ordinarily, practical curved beams are not designed with thin webs because of
the possibility of failure by excessive radial stresses (see Section 9.3). Therefore, neglect-
ing the effect of 0,4 on the computation of Gy is reasonable.

Let the z axis be normal to face BC (Figure 9.2b). By equilibrium of forces in the z
direction and of moments about the centroidal x axis, we find

Y.F, = [ogedA-N =0
I M, = [ope(R-r)dA-M, =0

or

N = [oggdA ©.1)
M, = [o4e(R-r)dA 9.2)

where R is the distance from the center of curvature of the curved beam to the centroid of
the beam cross section and  locates the element of area dA from the center of curvature.
The integrals of Egs. 9.1 and 9.2 cannot be evaluated until G4 is expressed in terms of 7.
The functional relationship between 0 g4 and 7 is obtained from the assumed geometry of
deformation and stress—strain relations for the material.

The curved beam element FBCH in Figure 9.2b represents the element in the unde-
formed state. The element F*B*C*H* represents the element after it is deformed by the
loads. For convenience, we have positioned the deformed element so that face B*C* coin-
cides with face BC. As in the case of straight beams, we assume that planes B*C* and
F*H* remain plane under the deformation. Face F*H* of the deformed curved beam ele-
ment forms an angle A(d8) with respect to FH. Line F*H* intersects line FH at the neu-
tral axis of the cross section (axis for which g = 0) at distance R, from the center of
curvature. The movement of the center of curvature from point O to point 0* is exaggerated
in Figure 9.2b to illustrate the geometry changes. For infinitesimally small displacements,
the movement of the center of curvature is infinitesimal. The elongation degg of a typical
element in the 8 direction is equal to the distance between faces FH and F*H* and varies
linearly with the distance (R, — r). However, the corresponding strain €44 is a nonlinear
function of r, since the element length » d@ also varies with . This fact distinguishes a
curved beam from a straight beam. Thus, by Figure 9.2b, we obtain for the strain

o - degg _ (R,-r)A(dO) - &_1 © ©9.3)
96~ 746 rdo r '
where
A(dB)
W= ———r 9.4
70 9.4)

It is assumed that the transverse normal stress o, is sufficiently small so that it may
be neglected. Hence, the curved beam is considered to be a problem in plane stress.
Although radial stress @,, may, in certain cases, be of importance (see Section 9.3), here
we neglect its effect on €44. Then, by Hooke’s law, we find

R, -r EwR

Cgo = Eegp = ——Ew = —2-E0 ©.5)
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CURVED BEAMS
Substituting Eq. 9.5 into Egs. 9.1 and 9.2, we obtain

N =R.Eo| dTA-Em [dA = R,EwA,,~Ewa ©9.6)

M

X

R,RE® | d%“ ~(R+R,)E0 [ dA+Eo | rdA

R REwA, —(R+R,))EwA+E®WRA = R E®(RA,, —A) .7

where A is the cross-sectional area of the curved beam and A,, has the dimensions of
length and is defined by the relation

dA

A, = j = (9.8)

Equation 9.7 can be rewritten in the form

R E M, 9.9
0= — .
" RA, -A ©-9)
Then substitution into Eq. 9.6 gives
A M

mx N (9.10)

A= ———m —
ARA, -A) A

The circumferential stress distribution for the curved beam is obtained by substituting Egs.
9.9 and 9.10 into Eq. 9.5 to obtain the curved beam formula

0 = N4 A= T4m) ©9.11)
A Ar(RA, -A)

The normal stress distribution given by Eq. 9.11 is hyperbolic in form; that is, it varies as

1/r. For the case of a curved beam with rectangular cross section (R/k = 0.75) subjected to

pure bending, the normal stress distribution is shown in Figure 9.3.

Since Eq. 9.11 has been based on several simplifying assumptions, it is essential that
its validity be verified. Results predicted by the curved beam formula can be compared
with those obtained from the elasticity solution for curved beams with rectangular sections
and with those obtained from experiments on, or finite element analysis of, curved beams
with other kinds of cross sections. The maximum value of circumferential stress 0 gg(cp)

FIGURE 9.3 Circumferential stress distribution in a rectangular section curved beam (R/h = 0.75).

Page 4


154535
Rectangle


CIRCUMFERENTIAL STRESSES IN A CURVED BEAM

as given by the curved beam formula may be computed from Eq. 9.11 for curved beams of
rectangular cross sections subjected to pure bending and shear (Figure 9.4). For rectangu-
lar cross sections, the ratios of Ogg(cp) to the elasticity solution Gggejaq are listed in
Table 9.1 for pure bending (Figure 9.4a) and for shear loading (Figure 9.4b), for several
values of the ratio R/ s, where /1 denotes the beam depth (Figure 9.24). The nearer this ratio
is to 1, the less error in Eq. 9.11.

The curved beam formula is more accurate for pure bending than shear loading. The
value of R/h is usually greater than 1.0 for curved beams, so that the error in the curved
beam formula is not particularly significant. However, possible errors occur in the curved
beam formula for I- and T-section curved beams. These errors are discussed in Section 9.4.
Also listed in Table 9.1 are the ratios of the maximum circumferential stress O g, given
by the straight-beam flexure formula (Eq. 7.1) to the value Oggejas)- The straight-beam
solution is appreciably in error for small values of R/h and is in error by 7% for R/h = 5.0;
the error is nonconservative. Generally, for curved beams with R/h greater than 5.0, the
straight-beam formula may be used.

As R becomes large compared to A, the right-hand term in Eq. 9.11 reduces to
~M, y/1,. The negative sign results because the sign convention for positive moments for
curved beams is opposite to that for straight beams (see Eq. 7.1). To prove this reduction,
note that r = R + y. Then the term RA,, in Eq. 9.11 may be written as

— R _ - a2
RAm_j(mn ljdA-A J‘R_'_ydA (a)

Hence, the denominator of the right-hand term in Eq. 9.11 becomes, for R/h — oo,

@) ®)
FIGURE 9.4 Types of curved beam loadings. (a) Pure bending. {b) Shear loading.

TABLE 9.1 Ratios of the Maximum Circumferential Stress in Rectangular Section
Curved Beams as Computed by Elasticity Theory, the Curved Beam Formula, and the
Flexure Formula

Pure bending Shear loading

R %90 (CB) %90 (st) %96 (CB) %0 (st)

h %96 {elast) %99 {elast) %96 (elast) %96 (elast)
0.65 1.046 0.439 0.855 0.407
0.75 1.012 0.526 0.898 0511
1.0 0.997 0.654 0.946 0.653
15 0.996 0.774 0.977 0.776
2.0 0.997 0.831 0.987 0.834
3.0 0.999 0.888 0.994 0.890
5.0 0.999 0.933 0.998 0.934
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CURVED BEAMS

_ Ry ) y
Ar(RA,_—A) = -A || X +y—y|ldA-Ay | 2—aA
r(RA,=4) J-(R+y y=y ij+yd
A y Ay y
=22 _dA-Alyda-Z [ ——aa
le+(y/R) -[y R-[1+(y/R)
_ AL ®)
R
since as R/h —» o, then y/R — 0, 1 + y/R - 1, [[y* dA/(1 + y/R)] = I, and
{lydA/(1 + y/R)] - JydA = 0. The right-hand term in Eq. 9.11 then simplifies to
MR M R JR dA
X (A—RA_ —yA ) = "( y da-2 _____)
AIx( m=YAn) Al jl+(y/R) le+(y/R)
- My ©
1

X

The curved beam formula (Eq. 9.11) requires that A,,, defined by Eq. 9.8, be calcu-
lated for cross sections of various shapes. The number of significant digits retained in cal-
culating A,, must be greater than that required for g4 since RA,, approaches the value of
A as R/h becomes large [see Eq. (a) above]. Explicit formulas for A4, A,,, and R for several
curved beam cross-sectional areas are listed in Table 9.2. Often, the cross section of a

TABLE 9.2 Expressions for A, R, and A m°= J'_‘_’;‘i.

T @ | A=b(c-a); R=9%LE
b v 2
' | ¢

|e—— a —— Am = b In-

¥ a
i b 2a+c¢
(h) A=<(c-a); R=="-<—2

<}Jt I 5(c-a); 3

1 ! bc c

g a - A = m&-»

: i ™ c—a " a
¥ T © A< b, +b2(c—a)' _ a(2by +by)+ c(by +2b,)
b, (I b, ’ 36, + by)
7 ] b
" g — bic—bya

e O — ] A = 1 - — b +b
" c—a " a LI
?_® @ | A= mp
2b
i | A, = ZW(R—A/Rz—bZ)
.- — R — -
| A = mbh
A (e)
2b
@ PP
|:: 1 -1
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CIRCUMFERENTIAL STRESSES IN A CURVED BEAM

TABLE 9.2 Expressions for A, R, and Am = J-d—:‘ {continued)

n(bf—bg)
| 2 2 2 2
3 =N i A, Zn(./R b2 —bl)

) A

>
I

= f(bhy - byhy)

bR bR b b
P B i y PO g P
hl h2 hl h2

35}
e
8
""L-'l
=
=y
S
3
]

2 .3
24 b . 4bsin” @
A=b0-Zsin26;, R = .
7" 2" 320-sm20)
Fora>b,
Ap = 2(19—2bsin9—nA/az—bZ+2Jaz_bzsin-1(b+acos9)
" a+bcos@
For b>a,
A = 2a0-2bsin0+24/b’—a’ln b+acos9+ Jb’—a’sin@
" a+ bcos@
7 24_b° 4bsin> 0

A= b 9—— i 29, R = P—— -

d 2" 4~ 326-sn20)

l A = 2a0+2bsin@-nNat—b> -2 az_bzsin-l(b—acose)
| “ 1 " a—-bcosO

A= n—bh‘ R = a._4_h

1 u | 7’ 3

2b '
' b 26 [2 2. -1(h
| B, | A, = 2b+%(a__ /az_h_z)_7 7 ((_1)

curved beam is composed of two or more of the fundamental areas listed in Table 9.2. The
values of A, A,,, and R for the composite area are given by summation. Thus, for compos-
ite cross sections,

A=Y A (9.12)

Ap = 3 Ay (9.13)
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CURVED BEAMS

EXAMPLE 9.1
Stress in Curved
Beam Portion of

a Frame

Solution

n
2 R4,
R=2=L_ 9.14)
24

i=1

where n is the number of fundamental areas that form the composite area.

9.2.1 Location of Neutral Axis of Cross Section

The neutral axis of bending of the cross section is defined by the condition g9 = 0. The
neutral axis is located at distance R, from the center of curvature. The distance R, is
obtained from Eq. 9.11 with the condition that g4 = 0 on the neutral surface r = R,,. Thus,
Eqg. 9.11 yields

AM
R (9.15)

"~ A M_+N(A-RA,)

For pure bending, N = 0, and then Eq. 9.15 yields

R, = Ai 9.16)
m
The frame shown in Figure E9.1 has a 50 mm by 50 mm square cross section. The load P is located
100 mm from the center of curvature of the curved beam portion of the frame. The radius of curvature
of the inner surface of the curved beam is @ = 30 mm. For P = 9.50 kN, determine the values for the
maximum tensile and compressive stresses in the frame.

50 mm
e

- [50mm

FIGURE E9.1

The circumferential stresses Oy are calculated using Eq. 9.11. Required values for A, A,,, and R for
the curved beam are calculated using the equations in row (@) of Table 9.2. For the curved beam a =

30 mm and ¢ = 80 mm. Therefore,

b(c—a) = 50(80—30) = 2500 mm>

A=
80
A =bmE =50m = 49.04
m p n%o =¥
a+c 30 + 80
= axe AT _ 55
R 5 > 55 mm

Hence, the maximum tensile stress is (at point B)

o = P MAA-TA) 9500  155(9500)[2500 — 30(49.04)]
968 © 4 " Ar(RA,,—A) 2500 2500(30)[55(49.04) —2500]

106.2 MPa
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EXAMPLE 9.2
Semicircular
Aircraft Beam

Solution

CIRCUMFERENTIAL STRESSES IN A CURVED BEAM

The maximum compressive stress is (at point C)

9500 , 155(9500)[2500 — 80(49.04)]
=222 = —49.3 MP:
%o0c = 3500 2500(80)[55(49.04) — 2500] 2

In a test of a semicircular aircraft fuselage beam, the beam is subjected to an end load P = 300 N that
acts at the centroid of the beam cross section (Figure E9.2a).

(a) Using Eq. 9.11, determine the normal stress gy that acts on the section AB as a function of radius
r and angle 8, where, by Figure E9.22, 1.47Tm<r<153mand0<0< 7.

(b) Determine the value of 0 for which the stress o gg is maximum.

(¢) For the value of 8 obtained in part (b), determine the maximum tensile and compressive stresses
and their locations.

(d) Determine the maximum tensile and compressive stresses acting on the section at 8 = /2.

(e) Compare the results obtained in parts (c) and (d) to those obtained using straight-beam theory,

where 0'99 = —M_)’/I
60 mm ;% 40 mm N M
)O .’ﬂ‘ / v
AN ><

y o/i;_

R=15m
(a) )

FIGURE E9.2

(a) Consider the free-body diagram of the beam segment 0 < @ < & (Figure E9.2b), where N, V, and M
are the normal force, the shear force, and the bending moment acting on the section at 8, respectively.
By Figure E9.2b, we have

YF, = V+Psinf = 0
Y Fg=N+Pcosd =0

‘ED Y My = PR(1-cos6)-M = 0

or
V = -Psin@ = -300sin8 [N]
N = —Pcos8 = -300co0s 8 [N] (a)
M = PR(1-cos8) = 450(1 - cos @) [N em]

For the cross section, by Figure E9.2b and Table 9.2,

A = b(c—a) = 0.04(1.53— 1.47) = 0.0024 m’
A =bnS = 0041133 = 000160021 m (b)
a 1.47

m

R=15m
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CURVED BEAMS

Note that the number of digits of precision shown for A,, is required in Eq. 9.11. Now, by Egs. (a),
(b), and 9.11, we have

5. N, MA-ra,)
9~ A4 Ar(RA,-A)

©
(14.2857 - 9.5250r)
r

o = —125c0s 0+ (1 - cos6) x 10° [kPa]

(b) For maximum (or minimum) o g,

do -

%9 _ [125 + (14.2857 9.5250r) % 105] sinf = 0

de r

Hence, 04¢ is minimum at 8 = 0 and it is maximum at @ = x, with values given by Eq. (c).
(c) From Egq. (c), the maximum tensile and compressive stresses at & = 7 are as follows:

For r = 1.47 m, the tensile stress at A is
Ogo = 125+ 38,633 = 38,758 kPa = 38.76 MPa (d)
For r = 1.53 m, the compressive stress at B is
Ogg = 125-37,588 = —37,463 kPa = -37.46 MPa (e)
(d) By Eq. (c), with 8 = z/2,

For r = 1.47 m, the tensile stress at A is

Cgg = 0+19,316kPa = 19.32 MPa ¢))
For r = 1.53 m, the compressive stress at B is
Ggg = 0-18,794kPa = —18.79 MPa ®
(e) Using straight-beam theory, we have
M

where, by Figure E9.2a,

1,,3 1 3 7 4
I = 1—2bh = 1—2(0.04)(0.06) =72x10 m

and for 0 = 7,
M = 2PR = 2(300)(1.5) = 900 N em
Hence, by Eq. (h),
Ogp = ~(125%10°)y @

For y = -0.03 m (point A in Figure E9.2a), Eq. (i) yields 049 = 37.50 MPa, compared to 0gy =
38.76 MPa in part (c). For y = +0.03 m (point B in Figure E9.2q), Eq. (i) yields 04y = —37.50 MPa,
compared to G g4 = 37.46 MPa in part (c).

For @ = 1/2,

M = PR = (300)(1.5) = 450N +m
and then by Eq. (h),
049 = —-(625x 10%)y ()

For y = —0.03 m (point A), Eq. (j) yields 04 = 18.75 MPa, compared to 0y = 19.32 MPa in part (d).
For y = +0.03 m (point B), Eq. (j) yields 6y =-18.75 MPa, compared to 6y = 18.79 MPa in part (d).
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EXAMPLE 9.3
Stresses in a
Crane Hook

Solution

CIRCUMFERENTIAL STRESSES IN A CURVED BEAM

Section BC is the critically stressed section of a crane hook (Figure E9.3a). For a large number of
manufactured crane hooks, the critical section BC can be closely approximated by a trapezoidal area
with half of an ellipse at the inner radius and an arc of a circle at the outer radius. Such a section is
shown in Figure E9.3b, which includes dimensions for the critical cross section. The crane hook
is made of a ductile steel that has a yield stress of ¥ = 500 MPa. Assuming that the crane hook is
designed with a factor of safety of SF = 2.00 against initiation of yielding, determine the maximum
load P that can be carried by the crane hook.

Note: An efficient algorithm to analyze crane hooks has been developed by Wang (1985).

(a2) ) ()
FIGURE E9.3 Crane hook.

The circumferential stresses Oy are calculated using Eq. 9.11. To calculate values of A, R, and A, for the
curved beam cross section, we divide the cross section into basic areas A, A,, and A, (Figure E9.3b).

For area A|, a = 84 mm. Substituting this dimension along with other given dimensions into Table
9.2, row (), we find

A, = 165876 mm’°, R, =7381mm, A, =22.64 mm @)

For the trapezoidal area A,, @ = 60 + 24 = 84 mm and ¢ = a + 100 = 184 mm. Substituting these
dimensions along with other given dimensions into Table 9.2, row (c), we find

A, = 6100.00 mm’, R,=12662mm, A, ,=50.57 mm (b)

For area A3, 8 = 0.5721 rad, b = 31.40 mm, and a = 157.60 mm. When these values are substituted
into Table 9.2, row (), we obtain

A,y = 11527 mmz, R, =186.01 mm, A, ;= 0.62mm ©)
Substituting values of 4;, R;, and A,,; from Eqgs. (a}-(c) into Egs. 9.12-9.14, we calculate

A = 6100.00 + 115.27 + 1658.76 = 7874.03 mm>
A,, = 50.57+0.62 +22.64 = 73.83 mm

6100.00(126.62) + 115.27(186.01) + 1658.76(73.81)

k= 7874.03

116.37 mm

As indicated in Figure E9.3c, the circumferential stress distribution 64 is due to the normal load
N = P and moment M, = PR. The maximum tension and compression values of ¢ 44 occur at points B
and C, respectively. For points B and C, by Figure E9.3b, we find
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CURVED BEAMS

EXAMPLE 9.4
Proof Test
of a Crane Hook

rg = 60 mm

re =60+24+100+5 = 189 mm

Substituting the required values into Eq. 9.11, we find

.. - P, 11637P[7874.03-60(73.83)]
868 ~ 7874.03  7874.03(60)[116.37(73.83) — 7874.03]

= 0.000127P + 0.001182P
0.001309P (tension)

6. - __P . __11637P[7874.03—189(73.83)]
66C ~ 7874.03  7874.03(189)[116.37(73.83) — 7874.03]

0.000127P - 0.000662P
—0.000535P (compression)

Since the absolute magnitude of G5 is greater than 044, initiation of yield occurs when G g5
equals the yield stress Y. The corresponding value of the failure load (P) is the load at which yield
occurs. Dividing the failure load Py = ¥/(0.001309) by the factor of safety SF = 2.00, we obtain the
design load P ; namely,

500

P= ——————— = 190900N
2.00(0.001309) 90,900

To proof test a crane hook an engineer applies a load P to the hook through a pin (Figure E9.4a).
Assume that the pin exerts a pressure p sin 8 {N/mm?] at radius r;for 0 £ 6 < &, where p is a con-
stant. The hook has a uniform rectangular cross section of thickness ¢.

(a) Determine the circumferential stress &4 as a function of P, r,, r;, r, and 6.

(b) For r; = 60 mm, r, = 180 mm, and ¢ = 50 mm, determine the maximum tensile and compressive
stresses on the cross section at 8 = #/2 and 6 = & in terms of P.

(c) If the maximum allowable tensile stress is g9 = 340 MPa, what is the allowable load P for a
safety factor of 2.2?

P

6)) (©)

FIGURE E9.4
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CIRCUMFERENTIAL STRESSES IN A CURVED BEAM

Solution ] (a) Consider the free-body diagram of the hook segment ABC (Figure E9.4b). Summing forces in the
y direction, we have

n
YF, = P—J[(psinq))(ri de)tlsing = 0
0
or
p=— (a)

Next consider the free-body diagram of an element of the hook. By Figure E9.4c we have for equilib-
rium in the x direction

6
YF, = —NsinG—Vcos0+pritJ sing cos¢ dp = 0
0
or
Nsin@+ Vcos@ = iprit(l - c0s26) (b)
For equilibrium in the y direction, we have
6
ZFy = —Ncos@+ Vsine—pritj sing sing d¢ = 0
0
or
Ncos@ - Vsing = —‘-liprit(ZG-— sin20) ©

For equilibrium of moments

‘3—) Y My = M-NR =0

or
M = NR (@)
The solution of Egs. (b), (c), and (d) is
N = %prit(sine— Ocos 6) (e)
V = 3pri(0sing) )
M = 2priRe(sing - 9cos6) ®

By Eqgs. (e), (g), and 9.11,
N M(A-rA,)

N 2T h
%0 = 3T I RA_—A) W)
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CURVED BEAMS

where
A= (ro—-r)t
r
A, =th2 .
r 6]
R=Lr +r)
E o 1
and by Egs. (a), (¢), and (g),
N = g(sine — BcosH)
6]
M = ]%e(sine ~ BcosB)
Hence, by Egs. (h), (i), and ( j),
rO
(ro+rd|ro—ri —r]nr—
_ P(sin@- 0cos ) !
00 = (9]
(ro—rt To
ri(rg+ry) lnr =2(ry=ry
1
(b) For r; = 60 mm, r, = 180 mm, and ¢ = 50 mm, Eq. (k) yields
Gpp = P(sin&- 0 cos e)(°'°6456 - 0.0005372) )
r
For 8 = nr/2, Eq. (1) yields
oo = P (228436 _ 00005372
r
For maximum tensile stress, r = r; = 60 mm, at which
(0'99)max = 0.000539P (m)
For maximum compressive stress, r = r, = 180 mm, at which
(000) oy = -0.000179P (n)
For 6 = m, Eq. (1) yields
oo = P ((LOZS —0.001690)
r
For maximum tensile stress, r = r; = 60 mm, at which
(Gee)max = 0.00169P (o)
For maximum compressive stress, r = r, = 180 mm, at which
(Gee)max = —0.000563P )
(c) For a maximum allowable tensile stress of 340 MPa and a safety factor of 2.2, Eq. (o) yields
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RADIAL STRESSES IN CURVED BEAMS

340 _ 4 00169P

22

or the maximum allowable load is P = 91,447 N =91.45 kN.

RADIAL STRESSES IN CURVED BEAMS

The curved beam formula for circumferential stress Ggg (Eq. 9.11) is based on the assumption
that the effect of radial stress is small. This assumption is accurate for curved beams with circu-
lar, rectangular, or trapezoidal cross sections, that is, cross sections that do not possess thin
webs. However, in curved beams with cross sections in the form of an H, T, or I, the webs may
be so thin that the maximum radial stress in the web may exceed the maximum circumferential
stress. Also, although the radial stress is usually small, it may be significant relative to radial
strength, for example, when anisotropic materials, such as wood, are formed into curved
beams. The beam should be designed to take such conditions into account.

To illustrate these remarks, we consider the tensile radial stress, resulting from a positive
moment, that occurs in a curved beam at radius r from the center of curvature 0 of the beam
(Figure 9.54). Consider equilibrium of the element BDGF of the beam, shown enlarged in the
free-body diagram in Figure 9.5¢. The faces BD and GF, which subtend the infinitesimal angle
d6, have the area A" shown shaded in Figure 9.5b. The distribution of Gggon each of these areas
produces a resultant circumferential force T (Figure 9.5¢) given by the expression

r
T = jaee dA (9.17)
a

The components of the circumferential forces along line OL are balanced by the radial stress o,
acting on the area tr d6, where ¢ is the thickness of the cross section at the distance r from the
center of curvature 0 (Figure 9.5b). Thus for equilibrium in the radial direction along 0L,

Y F.=0=o,,tr d8—2T sin(d6/2) = (c,,tr —T) d0
since for infinitesimal angle d6)2, sin(d6/2) = d6f2. Therefore, the tensile stress resulting from

the positive moment is

o, == (9.18)

(a) (b) ()

FIGURE 9.5 Radial stress in a curved beam. (a) Side view. {b} Cross-sectional shape. (c) Ele-
ment BDGF.
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CURVED BEAMS

EXAMPLE 9.5
Radial Stress in a
T-Section

The force T is obtained by substitution of Eq. 9.11 into Eq. 9.17. Thus,

r

r r
M_A
T=’l’jdA+__" j‘ié————-—" m A
A RA_—A) 7 TARA,-A)
a a a (9.19)
, AAL —A’A
T = ﬁ“_N.,._'ﬂ___L”
A " ARA -A) *
where
r r
’ dA ’
Al = j = ad A= j dA (9.20)
a a

Substitution of Eq. 9.19 into Eq. 9.18 yields the relation for the radial stress. For rectangular cross
section curved beams subjected to shear loading (Figure 9.4b), a comparison of the resulting
approximate solution with the elasticity solution indicates that the approximate solution is conser-
vative. Furthermore, for such beams it remains conservative to within 6% for values of R/h > 1.0
even if the term involving N in Eq. 9.19 is discarded. Consequently, if we retain only the moment
term in Eq. 9.19, the expression for the radial stress may be approximated by the formula

AA, —A'A,
0, = ————M (9.21)
trA(RA, - A) *
to within 6% of the elasticity solution for rectangular cross section curved beams sub-
jected to shear loading (Figure 9.45).

9.3.1 Curved Beams Made from Anisotropic Materials

Typically, the radial stresses developed in curved beams of stocky (rectangular, circular, etc.)
cross sections are small enough that they can be neglected in analysis and design. However,
some anisotropic materials may have low strength in the radial direction. Such materials
include fiber-reinforced composites (fiberglass) and wood. For these materials, the relatively
small radial stress developed in a curved beam may control the design of the beam owing to the
corresponding relatively low strength of the material in the radial direction. Hence, it may be
important to properly account for radial stresses in curved beams of certain materials.

The curved beam in Figure E9.5 is subjected to a load P = 120 kN. The dimensions of section BC are
also shown. Determine the circumferential stress at B and radial stress at the junction of the flange
and web at section BC.

- |24 mm
T C
168 mm
€ Web
B £
+ —F 2
_—— Flange
£
€ B
=4 j=— 120 mm —|
N 72 mm

FIGURE E9.5
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Solution

EXAMPLE 9.6
Radial Stress in
an I-Section

Solution

RADIAL STRESSES IN CURVED BEAMS

The magnitudes of A, A,,, and R are given by Egs. 9.12, 9.13, and 9.14, respectively. They are

A = 48(120) + 120(24) = 8640 mm’
_ 48(120)(96) + 120(24)(180)
R = = 124.0 mm
8640
120 240
= 1201 4 24 10220 = 77,
A 20 n72+2 n120 93 mm

The circumferential stress is given by Eq. 9.11. It is

... = 120,000  364.0(120,000)[8640 - 72(77.93)]
868~ 78640 8640(72)[124.0(77.93) — 8640]

13.9 +207.8 = 221.7 MPa

The radial stress at the junction of the flange and web is given by Eq. 9.21, withr = 120 mm and ¢ =
24 mm. Magnitudes of A" and A, are

48(120) = 5760 mm>

A’
’ 120
= 120 In= = 61.
AL 20 = 30 mm

Substitution of these values into Eq. 9.21, which neglects the effect of N, gives

_ 364.0(120,000)[8640(61.30) — 5760(77.93)] _ 43¢ 5 MPa
rr 24(120)(8640)[ 124.0(77.93) — 8640] '

Hence, the magnitude of this radial stress is appreciably less than the maximum circumferential stress
(loggg| > |0ggc|) and may not be of concern for the design engineer.

The curved section of the frame of a press is subjected to a positive moment M, = 96 kN e m and a
shear load P = 120 kN (Figure E9.6a). The dimensions of section BC are shown in Figure E9.6b.
Determine the circumferential stress &g at point B and the radial stress ¢, at points B” and C” of sec-
tion BC. Include the effects of traction N.

C =150 mm —»
40 mm
Cc'— Ra
50 mm 120 mm
P P B — -+
e ~—
M, My 60 mm
B — A
260 mm 80 mm
300 mm
(@ ®) (c)
FIGURE E9.6

The magnitudes of A, A,,, and R are given by Eqgs. 9.12, 9.13, and 9.14. They are

A = 150(60) + 50(120) + 150(40) = 21,000 mm2
140 260 300
= In— +50 In=— + 150 In=— = 136.360
A, = 150 %0 + 50 140+ n260 mm @
R = 150(60)110+50(2112(())3(2)00+ 150(40)280 _ 184.286 mm
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By Figure E9.6¢,

@ S M= M-My-PR =0
or

M = 96,000,000 + 120,000(184.286) = 118.1x 10° N« mm

Then, by Eq. 9.11 with r = 80 mm, the circumferential stress at b is

120,000 , 118,100,000 [21,000 — 80(136.360)]
21,000 21,000(80)[184.286(136.360) — 21,000]
571+ 171.80 = 177.51 MPa

Oge

To find the radial stress G,, at the junction of the flange and web (point B’), we require the geo-
metric terms A” and A, . By Eq. 9.20,

A’ = 150(60) = 9000 mm>
140
. dr _ 140 _ (b)
A, = | 150 = = 150 In-z= = 83.94 mm
80

With the values in Eq. (b), 7 = 140 mm, and ¢ = 50 mm, Eqgs. 9.18 and 9.19 yield
(o] = Ii’ ]X + M_m.
T Atr trA(RA, —-A)
_ 9000 120,000 + [21,000(83.94) — 9000(136.360)]
21,000 50(140) 50(140)(21,000)[184.286(136.360) —21,000]
7.347 + 104.189 = 111.54 MPa

(118.1 x 10%)

Here we see that the effect of N represents (7.347/111.54) x 100% = 6.59% of the total g,, at B’
Similarly, for the radial stress at point C’, where r = 260 mm and ¢ = 50 mm, the geometric terms
A’ and A, are

A’ = 150(60) +50(120) = 15,000 mm’
140 260
, dr dr _ ©)
4, = | 150 + ISOT = 114.89 mm
80 140

Then, by Egs. 9.18, 9.19, and (c), we have

_ 15,000 120,000 + [21,000(114.89) — 15,000(136.360)]
T 21,000 50(260) 50(260)(21,000)[184.286(136.360) — 21,000]

6.59 + 38.48 = 45.07 MPa

(118.1 x 10%)

At C’, the effect of N represents 14.6% of the total radial stress. In either case (point B’ or C’), G,, is
considerably less than 0gq = 177.54 MPa.
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EXAMPLE 9.7
Radial Stress in
Glulam Beam

Solution

RADIAL STRESSES IN CURVED BEAMS

A glued laminated timber (glulam) beam is used in a roof system. The beam has a simple span of
15 m and the middle half of the beam is curved with a mean radius of 10 m. The beam depth and
width are both constant: 4 = 0.800 m and b = 0.130 m. Dead load is 2400 N/m and snow load is
4800 N/m. The geometry of the beam and assumed loading are shown in Figure E9.7.

(a) Determine the maximum circumferential and radial stresses in the beam.
(b) Compare the maximum circumferential stress to that obtained from the straight-beam flexure formula.

(¢) Compare the maximum circumferential and radial stresses to the allowable stress limits for Dou-
glas fir: Ggg(pow) = 15-8 MPa, O, (10w = 0.119 MPa (AITC, 1994).

7200 N/m

L+ ¢+ ¢+ ¢+ ¢ ¢+ & ¢ ¢ |

FIGURE E9.7

(a) The maximum bending moment occurs at midspan and has magnitude M, = wil /8 = 202,500 N o m.
Circumferential stress 0 g is calculated using Eq. 9.11. For the curved beam described,

d
=R-% =96
a 2 m
c=R+3=104m
2
A = 0.13x0.80 = 0.104 m’

A, = 0.131n19i~6‘3 = 0.0104056

The maximum circumferential stress occurs at the inner edge of the beamr = a. It is

M. (A-aA,)  202,500[0.104 — 9.6(0.0104056)]

= = = 15.0 MP
To6(max) Aa(RA,,—-A)  0.104(9.6)[10.0(0.0104056) — 0.104] 2

The maximum radial stress O,,y,x) is calculated using Eq. 9.21. However, the location at which
O r(max) Occurs is unknown. Thus, we must maximize o,, with respect to r. For a rectangular cross
section, the quantities in Eq. 9.21 are

t = b = width of cross section

d = c—a = depth of cross section

A = bd
A’ = b(r-a)
[
Ay = bInS
’ r
Am= bln‘—l'
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CURVED BEAMS

Substitution of these expressions into Eq. 9.21 gives

| *(E)-C-om(})

(o] = —X (a)

Tob rd[R 1n(§)-d]

Maximizing o,, with respect to r, we find that 6y, occurs at

(1-505) ®)

r = ae

We evaluate Eq. (b) for the particular cross section of this example to obtain r = 9.987 m. At that loca-
tion, the radial stress is, by Eq. (a),

9.987 10.4
0.80 m(_) - [(9.987 ~9.6) m(_)]
_ 202,500 9.6 9.6

Grr(max) - 0.13

9‘987(0.80)[10.0 1n(%‘) - 0.80] ©

0.292 MPa

An approximate formula for computing radial stress in curved beams of rectangular cross section is
(AITC, 1994, p. 227)

_ 3M
Orr = 5Rbd @

Using this expression, we determine the radial stress to be &,, = 0.292 MPa. The approximation of
Eq. (d) is quite accurate in this case! In fact, for rectangular curved beams with R/d > 3, the error in
Egq. (d) is less than 3%. However, as R/d becomes small, the error grows substantially and Eq. (d) is
nonconservative.

(b) Using the curved beam formula, Eq. 9.11, we obtain the maximum circumferential stress
as Cgg(max) = 15.0 MPa. Using the straight-beam flexure formula, Eq. 7.1, with I, = bd 312 =
0.005547 m*, we obtain G4 = 202,500(0.40)/0.005547 = 14.6 MPa. Thus, the straight-beam flexure
formula is within 3% of the curved beam formula. One would generally consider the flexure formula
adequate for this case, in which R/d = 12.5.

(c) The maximum circumferential stress is just within its limiting value; the beam is understressed
just 5%. However, the maximum radial stress is 245% over its limit. It would be necessary to modify
beam geometry or add mechanical reinforcement to make this design acceptable.

CORRECTION OF CIRCUMFERENTIAL STRESSES
IN CURVED BEAMS HAVING |, T, OR SIMILAR CROSS
SECTIONS

If the curved beam formula is used to calculate circumferential stresses in curved beams
having thin flanges, the computed stresses are considerably in error and the error is non-
conservative. The error arises because the radial forces developed in the curved beam
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CORRECTION OF CIRCUMFERENTIAL STRESSES IN CURVED BEAMS HAVING I, T, OR SIMILAR CROSS SECTIONS

(@)

causes the tips of the flanges to deflect radially, thereby distorting the cross section of the
curved beam. The resulting effect is to decrease the stiffness of the curved beam, to
decrease the circumferential stresses in the tips of the flanges, and to increase the circum-
ferential stresses in the flanges near the web.

Consider a short length of a thin-flanged I-section curved beam included between
faces BC and FH that form an infinitesimal angle d@ as indicated in Figure 9.6a. If the
curved beam is subjected to a positive moment M,, the circumferential stress distribution
results in a tensile force T acting on the inner flange and a compressive force C acting on
the outer flange, as shown. The components of these forces in the radial direction are T d6
and C d@. If the cross section of the curved beam did not distort, these forces would be
uniformly distributed along each flange, as indicated in Figure 9.6b. However, the two por-
tions of the tension and compression flanges act as cantilever beams fixed at the web. The
resulting bending because of cantilever beam action causes the flanges to distort, as indi-
cated in Figure 9.6¢.

The effect of the distortion of the cross section on the circumferential stresses in the
curved beam can be determined by examining the portion of the curved beam ABCD in
Figure 9.6d. Sections AC and BD are separated by angle 0 in the unloaded beam. When
the curved beam is subjected to a positive moment, the center of curvature moves from 0
to 0*, section AC moves to A*C*, section BD moves to B*D*, and the included angle
becomes 8*. If the cross section does not distort, the inner tension flange AB elongates to
length A*B*. Since the tips of the inner flange move radially inward relative to the undis-
torted position (Figure 9.6¢), the circumferential elongation of the tips of the inner flange
is less than that indicated in Figure 9.6d. Therefore, 0 yq in the tips of the inner flange is
less than that calculated using the curved beam formula. To satisfy equilibrium, it is nec-
essary that 644 for the portion of the flange near the web be greater than that calculated
using the curved beam formula. Now consider the outer compression flange. As indicated
in Figure 9.6d, the outer flange shortens from CD to C*D* if the cross section does not
distort. Because of the distortion (Figure 9.6¢), the tips of the compressive flange move
radially outward, requiring less compressive contraction. Therefore, the magnitude of Ggg

- Tips of flanges

= e |

—1-
i
]

() ©

@

FIGURE 9.6 Distortion of cross section of an |-section curved beam.
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CURVED BEAMS

in the tips of the compression outer flange is less than that calculated by the curved beam
formula, and the magnitude of oy, in the portion of the compression flange near the web
is larger than that calculated by the curved beam formula.

The resulting circumferential stress distribution is indicated in Figure 9.7. Since in
developing the curved beam formula we assume that the circumferential stress is indepen-
dent of x (Figure 9.2), corrections are required if the formula is to be used in the design of
curved beams having I, T, and similar cross sections. There are two approaches that can be
employed in the design of these curved beams. One approach is to prevent the radial dis-
tortion of the cross section by welding radial stiffeners to the curved beams. If distortion
of the cross section is prevented, the use of the curved beam formula is appropriate. A sec-
ond approach, suggested by H. Bleich (1933), is discussed next.

9.4.1 Bleich's Correction Factors

Bleich reasoned that the actual maximum circumferential stresses in the tension and com-
pression flanges for the I-section curved beam (Figure 9.8a) can be calculated by the
curved beam formula applied to an I-section curved beam with reduced flange widths, as
indicated in Figure 9.8b. By Bleich’s method, if the same bending moment is applied to
the two cross sections in Figure 9.8, the computed maximum circumferential tension and

jM

FIGURE 9.7 Stresses in I-section of curved beam.

(@) )
FIGURE 9.8 (a) Actual and (b) modified I-section for a curved beam.
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CORRECTION OF CIRCUMFERENTIAL STRESSES IN CURVED BEAMS HAVING |, T, OR SIMILAR CROSS SECTIONS

compression stresses for the cross section shown in Figure 9.8b, with no distortion, are
equal to the actual maximum circumferential tension and compression stresses for the
cross section in Figure 9.8a, with distortion.

The approximate solution proposed by Bleich gives the results presented in tabular
form in Table 9.3. To use the table, the ratio b p/ 71f must be calculated, where

bp = projecting width of flange (see Figure 9.8a)
7 = radius of curvature to the center of flange
= thickness of flange
The reduced width b; of the projecting part of each flange (Figure 9.8b) is given by the
relation
b, = ab, (9.22)

where ¢ is obtained from Table 9.3 for the computed value of the ratio blz,/ 71f . The
reduced width of each flange (Figure 9.8b) is given by

b = 2b1’, +1, (9.23)

where ¢, is the thickness of the web. When the curved beam formula (Eq. 9.11) is applied
to an undistorted cross section corrected by Eq. 9.23, it predicts the maxmum circumferen-
tial stress in the actual (distorted) cross section. This maximum stress occurs at the center
of the inner flange. It should be noted that the state of stress at this point in the curved
beam is not uniaxial. Because of the bending of the flanges (Figure 9.6¢), a transverse
component of stress o, (Figure 9.2) is developed; the sign of o, is opposite to that of
O ggmax)- Bleich obtained an approximate solution for o, for the inner flange. It is given
by the relation

0, = BB g (9.24)

where f3 is obtained from Table 9.3 for the computed value of the ratio b2 /7t. , and where
599 is the magnitude of the circumferential stress at midthickness of the inner flange; the
value of g is calculated based on the corrected cross section.

Although Bleich’s analysis was developed for curved beams with relatively thin
flanges, the results agree closely with a similar solution obtained by C. G. Anderson
(1950) for I-beams and box beams, in which the analysis was not restricted to thin-flanged
sections. Similar analyses of tubular curved beams with circular and rectangular cross

TABLE 9.3 Table for Calculating the Effective Width and Lateral Bending Stress
of Curved |- or T-Beams

b3/ Tt, 02 03 0.4 05 0.6 0.7 08 0.9 1.0
a 0977 0950 0917 0878 0838 0800 0762 0726 0.693
B 0580 0.836 1.056 1.238 1.382 1495 1577 1.636  1.677

b/ Tt 14 12 13 14 15 2.0 3.0 40 5.0
o« 0663 0636 0611 058 0569 0495 0.414 0367 0334
B 1703 1721 1728 1732 1732 1707 1671 1680 1700
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CURVED BEAMS

EXAMPLE 9.8
Bleich Correction
Factors for
T-Section

Solution

sections have been made by S. Timoshenko (1923). An experimental investigation by
D. C. Broughton, M. E. Clark, and H. T. Corten (1950) showed that another type of correc-
tion is needed if the curved beam has extremely thick flanges and thin webs. For such
beams each flange tends to rotate about a neutral axis of its own in addition to the rotation
about the neutral axis of the curved beam cross section as a whole. Curved beams for
which the circumferential stresses are appreciably increased by this action probably fail by
excessive radial stresses.

Note: The radial stress can be calculated using either the original or the modified cross
section.

A T-section curved beam has the dimensions indicated in Figure E9.8a and is subjected to pure bend-
ing. The curved beam is made of a steel having a yield stress ¥ = 280 MPa.

(a) Determine the magnitude of the moment that indicates yielding in the curved beam if Bleich’s
correction factors are not used.

(b) Use Bleich’s correction factors to obtain a modified cross section. Determine the magnitude of the
moment that initiates yielding for the modified cross section and compare with the result of part (a).

20 mm 20 mm
- ]
120 mm 120 mm
20 mm 20 mm
T T }«—100 mm—>| ) l«72.1 mm>
60 mm 60 mm
" Center of curvature "Center of curvature

(@) )
FIGURE E9.8 (a) Actuai section. {b) Modified section.

(a) The magnitudes of A4, A,,, and R for the actual cross section are given by Egs. 9.12, 9.13, and 9.14,
respectively, as follows: A = 4000 mm?, A, = 44.99 mm, and R = 100.0 mm. By comparison of the
stresses at the locations r = 180 mm and r = 60 mm, we find that the maximum magnitude of o4
occurs at the outer radius (+ = 180 mm). (See Eq. 9.11.) Thus,

M {4000 — 180(44.99)]
4000(180){100.0(44.9) — 4000]|

Gee(max) = ’
_5
= |-L141x107m,

where M, has the units of N « mm. Since the state of stress is assumed to be uniaxial, the magnitude
of M, to initiate yielding is obtained by setting 09 = Y. Thus,

M = 280 = 24,540,000 N e mm = 24.54 kN ¢ m

x = _
1.141 x 10

(b) The dimensions of the modified cross section are computed by Bleich’s method; hence bi/ Tt 7
must be calculated. It is

Page 24


154535
Rectangle


DEFLECTIONS OF CURVED BEAMS

= ———= = 1143

Linear interpolation in Table 9.3 yields o = 0.651 and § = 1.711. Hence, by Eqs. 9.22 and 9.23, the
modified flange width is b = ab, = 0.651(40) = 26.04 mm and b= Zb;’ +1,,=2(26.04) + 20 =72.1 mm
(Figure E9.8b). For this cross section, by means of Egs. 9.12, 9.13, and 9.14, we find

A = 72.1(20) +20(100) = 3442 mm">

R = 12.1(20)(70) +20(100)(130) _ ;04 9 o

3442

80 180
72.1 In— +20 In— = 36.96 mm
60 * 80 2

A

m

Now by means of Eq. 9.11, we find that the maximum magnitude of 0 g4 occurs at the inner radius of
the modified cross section. Thus, with » = 60 mm, Eq. 9.11 yields

. _ M,[3442-60(36.96)]
66(max) ~ 3242 (60)[104.9(36.96) — 3442]

= 1.363x 10°M,

The magnitude of M, that causes yielding can be calculated by means of either the maximum shear
stress criterion of failure or the octahedral shear stress criterion of failure. If the maximum
shear stress criterion is used, the minimum principal stress must also be computed. The minimum
principal stress is 0,,. Hence, by Egs. 9.11 and 9.24, we find

M, [3442 -70(36.96)]

— -6
= = 815x10 "M
T o0 3442(70)[104.9(36.96) — 3442] X *

0, = —BGge = ~LT11(8.15x 107°M,) = 1394 x 10°M,

XX

and

M, = 10,140,000 N » mm = 10.14 kN « m

A comparison of the moment M, determined in parts (a) and (b) indicates that the computed M,
required to initiate yielding is reduced by 58.8% because of the distortion of the cross section. Since
the yielding is highly localized, its effect is not of concern unless the curved beam is subjected to
fatigue loading. If the second principal stress o, is neglected, the moment M, is reduced by 16.5%
because of the distortion of the cross section. The distortion is reduced if the flange thickness is
increased.

DEFLECTIONS OF CURVED BEAMS

A convenient method for determining the deflections of a linearly elastic curved beam is
by the use of Castigliano’s theorem (Chapter 5). For example, the deflection and rotation
of the free end of the curved beam in Figure 9.2a are given by the relations

_dUu
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CURVED BEAMS

_du
¢ = o, (9.26)

where 6p, is the component of the deflection of the free end of the curved beam in the
direction of load P;, ¢ is the angle of rotation of the free end of the curved beam in the
direction of My, and U is the total elastic strain energy in the curved beam. The total strain
energy U (see Eq. 5.6) is equal to the integral of the strain-energy density Uy, over the vol-
ume of the curved beam (see Eqs. 3.33 and 5.7).

Consider the strain-energy density Uy for a curved beam (Figure 9.2). Because of
the symmetry of loading relative to the (y, z) plane, 0, = 0,, = 0, and since the effect of
the transverse normal stress o, (Figure 9.2b) is ordinarily neglected, the formula for the
strain-energy density Uy reduces to the form

where the radial normal stress o,,, the circumferential normal stress 0 g4, and the shear
stress O, are, relative to the (x, y, z) axes of Figure 9.2b, 0,, = Oy, Ogg = O, and 0,9 =
O,,. In addition, the effect of 0, is often small for curved beams of practical dimensions.
Hence, the effect of 6, is often discarded from the expression for Uj,. Then,

2 2
Uy = %‘70(9+ flacro

The stress components 6 gg and 0,4, Tespectively, contribute to the strain energies Uy and
Ug because of the normal traction N and shear V (Figure 9.2b). In addition, 04 contrib-
utes to the bending strain energy Uy, as well as to the strain energy Uy gy because of a cou-
pling effect between the moment M and traction N, as we shall see in the derivation below.

Ordinarily, it is sufficiently accurate to approximate the strain energies Ug and Uy
that are due to shear V and traction N, respectively, by the formulas for straight beams (see
Section 5.3). However, the strain energy Uy resulting from bending must be modified. To
compute this strain energy, consider the curved beam shown in Figure 9.2b. Since the
strain energy increment dU for a linearly elastic material undergoing small displacement is
independent of the order in which loads are applied, let the shear load V and normal load N
be applied first. Next, let the moment be increased from zero to M,. The strain energy
increment resulting from bending is

AUy = %Mx A(d6) = %wade 927)

where A(d8), the change in d@, and @ = A(d8)/d6 are due to M, alone. Hence, @ is deter-
mined from Eq. 9.10 with N = 0. Consequently, Eqs. 9.27 and Eq. 9.10 yield (with N = 0)

2
Ame

AUy = e X
M ™ 24(RA,,-A)E

(9.28)

During the application of M,, additional work is done by N because the centroidal
(middle) surface (Figure 9.2b) is stretched an amount de,,. Let the corresponding strain
energy increment caused by the stretching of the middle surface be denoted by dUp. This
strain energy increment dUyqy; is equal to the work done by N as it moves through the dis-
tance déyg. Thus,
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where déggy and 2,44 refer to the elongation and strain of the centroidal axis, respectively.
The strain g4 is given by Eq. 9.3 with r = R. Thus, Eq. 9.3 (with = R) and Egs. 9.29, 9.9,
and 9.10 (with N = 0) yield the strain energy increment dUy gy resulting from coupling of
the moment M and traction N:

N[ M, A M, M N
AUy = = -R de = - —ZX_de 9.3
MN " E [RAm —A A(RA,-A) EA ©-30)

By Egs. 5.8, 5.14, 9.28, and 9.30, the total strain energy U for the curved beam is
obtained in the form

U = US+UN+UM+UMN

or

KV°R A M
KV Rigs [NRagy [ mTx 4 YN, 31
274G J2AE J2A(RA “HE .[ o ©:3)

Equation 9.31 is an approximation, since it is based on the assumptions that plane sections remain
plane and that the effect of the radial stress o, on U is negligible. It might be expected that the
radial stress increases the strain energy. Hence, Eq. 9.31 yields a low estimate of the actual strain
energy. However, if M, and N have the same sign, the coupling Uyq;, the last term in Eq. 9.31, is
negative. Ordinarily, Uyqy is small and, in many cases, it is negative. Hence, we recommend that
Unns the coupling strain energy, be discarded from Eq. 9.31 when it is negative. The discarding
of Uppy from Eq. 9.31 raises the estimate of the actual strain energy when Uy is negative and
compensates to some degree for the lower estimate caused by discarding o,

The deflection J,),, of rectangular cross section curved beams has been given by
Timoshenko and Goodier (1970) for the two types of loading shown in Figure 9.4. The ratio
of the deflection ;; given by Castigliano’s theorem and the deflection &, is presented in
Table 9.4 for several values of R/h. The shear coefficient & (see Egs. 5.14 and 5.15) was taken
to be 1.5 for the rectangular section, and Poisson’s ratio v was assumed to be 0.30.

TABLE 9.4 Ratios of Deflections in Rectangular Section Curved Beams Computed
by Elasticity Theory and by Approximate Strain Energy Solution

Neglecting Uy Including Uy
Pure bending Shear loading Pure bending Shear loading

I [

h ¢selast ¢selast aelast ¢scalast
0.65 0.923 1.563 0.697 1.215
0.75 0.974 1.381 0.807 1.123
1.0 1.004 1.197 0914 1.048
15 1.006 1.085 0.968 1.016
2.0 1.004 1.048 0.983 1.008
3.0 1.002 1.021 0.993 1.003
5.0 1.000 1.007 0.997 1.001
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CURVED BEAMS

EXAMPLE 9.9
Deformations in
a Curved Beam
Subjected to
Pure Bending

Solution

Note: The deflection of curved beams is much less influenced by the curvature of the curved
beam than is the circumferential stress Ggg. If R/h is greater than 2.0, the strain energy resulting
from bending can be approximated by that for a straight beam. Thus, for R/h > 2.0, for computing
deflections the third and fourth terms on the right-hand side of Eq. 9.31 may be replaced by

2
X

Uy = | 2Er R4 9.32)

In particular, we note that the deflection of a rectangular cross section curved beam with
R/h =2.0is 7.7% greater when the curved beam is assumed to be straight than when it is
assumed to be curved.

9.5.1 Cross Sections in the Form of an |, T, etc.

As discussed in Section 9.4, the cross sections of curved beams in the form of an I, T, etc.
undergo distortion when loaded. One effect of the distortion is to decrease the stiffness of the
curved beam. As a result, deflections calculated on the basis of the undistorted cross section
are less than the actual deflections. Therefore, the deflection calculations should be based on
modified cross sections determined by Bleich’s correction factors (Table 9.3). The strain
energy terms Uy and Uy, for the curved beams should also be calculated using the modified
cross section. We recommend that the strain energy Ug be calculated with £ = 1.0, and with
the cross-sectional area A replaced by the area of the web A,, = th, where ¢ is the thickness of
the web and 4 is the curved beam depth. Also, as a working rule, we recommend that the
coupling energy Upq be neglected if it is negative and that it be doubled if it is positive.

The curved beam in Figure E9.9 is made of an aluminum alloy (E = 72.0 GPa), has a rectangular
cross section with a thickness of 60 mm, and is subjected to a pure bending moment M =24.0kN « m.

(a) Determine the angle change between the two horizontal faces where M is applied.

(b) Determine the relative displacement of the centroids of the horizontal faces of the curved beam.

AP DA A
0 0/ u

(@) ®)
FIGURE E9.9

Required values for A, A,,, and R for the curved beam are calculated using equations in row (a) of
Table 9.2:

A = 60(150) = 9000 mm>

250
A, = 60 ln-ﬂ)—-0 = 54.98 mm

R

100+ 75 = 175 mm
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EXAMPLE 9.10
Deflections
in a Press

Solution

DEFLECTIONS OF CURVED BEAMS

(a) The angle change between the two faces where M is applied is given by Eq. 9.26. As indicated in
Figure E9.94, the magnitude of M, at any angle 8 is M, = M. Thus, by Eq. 9.26, we obtain

r

_ U _ AM,
¢ T gD 48

oM JARA,-4)

- 54.98(24,000,000)
9000[175(54.98) — 9000](72,000)

0.01029 rad

(b) To determine the deflection of the curved beam, a load P must be applied as indicated in Figure
E9.95. In this case, M, = M + PR sin@ and JU/JP = R sin8. Then the deflection is given by Eq. 9.25,
in which the integral is evaluated with P = 0. Thus, the relative displacement is given by the relation

n
_ U _ AM, .
8 = ¥ {A_—(RAM—A)E (Rsin8)do
P=0

or

_ __54.98(24,000,000)(175)(2)  _
% = S000[175(54.98) — 90001 (72.000) ~ 147 ™m

A press (Figure E9.10a) has the cross section shown in Figure E9.10b. It is subjected to a load P =
11.2 kN. The press is made of steel with E = 200 GPa and v = 0.30. Determine the separation of the

jaws of the press caused by the load.

10 mm 10 mm
f 50 mm 50 mm
QT 10 mm 10 mm
k2 k2
£
~— g .
A g P e20mm— T —
M, ‘f i 30 mm ﬁmm 34.7 mm
P P
(@ ) (c)

FIGURE E9.10 (a) Curved beam. {b) Actual section. {c) Modified section.

The press is made up of two straight members and a curved member. We compute the strain energies
resulting from bending and shear in the straight beams, without modification of the cross sections.
The moment of inertia of the cross section is I, = 181.7 x 10> mm®*. We choose the origin of the coor-
dinate axes at load P, with z measured from P toward the curved beam. Then the applied shear V and

moment M, at a section in the straight beam are

|4
M

X

non
W
N
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In the curved beam portion of the press, we employ Bleich’s correction factor to obtain a modified
cross section. With the dimensions in Figure E9.10b, we find

2

b 2
R - NV 7Y
71, 35(10)

A linear interpolation in Table 9.3 yields the result o = 0.822. The modified cross section is shown in
Figure E9.10c. Equations 9.12-9.14 give

A = 347(10) + 10(40) = 747 mm’
R < 347(10)(35) + 10(40)(60) _ 45 4 mm
747
40
A, =10 ln—6+347 ln§6 = 16.9 mm

With 6 defined as indicated in Figure E9.10q, the applied shear V, normal load N, and moment M, for
the curved beam are

V = Pcos@
N = Psin@
M, = P(100 + Rsin6)

Summing the strain energy terms for the two straight beams and the curved beam and taking the
derivative with respect to P (Eq. 9.25), we compute the increase in distance §p between the load
points as

lOOP
=2J'A
0

RdO+ P(100+R smG) A, " 40
I A(RA, -AE

Pcos 6 9

AG

dz+2J'—d+ RdO+ j

The shear modulus is G = E/[2(1 + V)] = 76,900 MPa and A, = th = (10)(50) = 500 mm?. Hence,

2(11,200)(100) , 2(11,200)(100)°

76,900(500)  3(200,000)(181,700)
, 11,200484)x | _11,200(48.4)7

500(76,900)(2) 747(200,000)(2)

16.9(11,200) S )
* T471484(169) = 747](200,000)[(100) mFa84) + 2(100)(48‘4)(2)]

8p =

or

8p = 0.058 +0.205 + 0.022 + 0.006 + 0.972 = 1.263 mm

STATICALLY INDETERMINATE CURVED BEAMS:
CLOSED RING SUBJECTED TO A CONCENTRATED LOAD

Many curved members, such as closed rings and chain links, are statically indeterminate
(see Section 5.5). For such members, equations of equilibrium are not sufficient to deter-
mine all the internal resultants (V, N, M,) at a section of the member. The additional rela-
tions needed to solve for the loads are obtained using Castigliano’s theorem with
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STATICALLY INDETERMINATE CURVED BEAMS: CLOSED RING SUBJECTED TO A CONCENTRATED LOAD

appropriate boundary conditions. Since closed rings are commonly used in engineering,
we present the computational procedure for a closed ring.

Consider a closed ring subjected to a central load P (Figure 9.9¢). From the condi-
tion of symmetry, the deformations of each quadrant of the ring are identical. Hence, we
need consider only one quadrant. The quadrant (Figure 9.9b) may be considered fixed at
section FH with a load P/2 and moment M, at section BC. Because of the symmetry of the
ring, as the ring deforms, section BC remains perpendicular to section FH. Therefore, by
Castigliano’s theorem, we have for the rotation of face BC

U

The applied loads V, N, and M, at a section forming angle 0 with the face BC are
=P sin
2
_P
= 5 cos 0 (9.34)

M. = MO—%—R(I—cosf))

X
Substituting Egs. 9.31 and 9.34 into Eq. 9.33, we find

o [Mo-(ER)1-cos0)]a, w2 (B)eose

0= de — | ———df 9.35
I A(RA, - A)E I AE (5-35)
0 0
where Upgy has been included. The solution of Eq. 9.35 is
My =ERI - 24_ (9.36)
2 RA, 7
H
P
0+ B c
P

(@) ()
FIGURE 9.9 Closed ring.
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If R/h is greater than 2.0, we take the bending energy Uy, as given by Eq. 9.32 and ignore
the coupling energy Uy Then, M is given by the relation

M, =R (1 —Z) 9.37)

With M, known, the loads at every section of the closed ring (Eqs. 9.34) are known. The
stresses and deformations of the closed ring may be calculated by the methods of Sections
9.2-9.5.

9.7 FULLY PLASTIC LOADS FOR CURVED BEAMS

In this section we consider curved beams made of elastic—perfectly plastic materials with
yield stress Y (Figure 1.5b). For a curved beam made of elastic—perfectly plastic material,
the fully plastic moment Mp under pure bending is the same as that for a straight beam
with identical cross section and material. However, because of the nonlinear distribution
of the circumferential stress Ggg in a curved beam, the ratio of the fully plastic moment
Mp under pure bending to maximum elastic moment My is much greater for a curved beam
than for a straight beam with the same cross section.

Most curved beams are subjected to complex loading other than pure bending. The
stress distribution for a curved beam at the fully plastic load P for a typical loading con-
dition is indicated in Figure 9.10. Since the tension stresses must balance the compression
stresses and load P p, the part Ay of the cross-sectional area A that has yielded in tension is
larger than the part A- of area A that has yielded in compression. In addition to the
unknowns Ay and Ac, a third unknown is Pp, the load at the fully plastic condition. This
follows because R (the distance from the center of curvature O to the centroid 0) can be
calculated and D is generally specified rather than Pp. The three equations necessary to
determine the three unknowns Ay, A¢, and Pp are obtained from the equations of equilib-
rium and the fact that the sum of A and A must equal the cross-sectional area A, that is,

FIGURE 9.10 Stress distribution for a fully plastic load on a curved beam.
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A= Ap+Ac (9.38)
The equilibrium equations are (Figure 9.10)

NF,=0=AY-AY-Pp (9.39)
YM, =0=PD-A Yy, —AYY (9.40)

In Eq. 9.40, y, and y - locate the centroids of Ay and A¢, respectively, as measured from
the centroid 0 of the cross-sectional area of the curved beam (Figure 9.10). Let M be the
moment, about the centroidal axis x, resulting from the stress distribution on section BC
(Figure 9.10). Then,

M =PpD = A YT, +A YT, (9.41)

Trial and error can be used to solve Eqgs. 9.38-9.40 for the magnitudes of Ay, Ac, and Pp,
since y; and y~ are not known until A7 and A¢ are known (McWhorter et al., 1971).

The moment M (Eq. 9.41) is generally less than the fully plastic moment Mp for pure
bending. It is desirable to know the conditions under which M resulting from load Pp can be
assumed equal to Mp, since for pure bending Ay is equal to A., and the calculations are
greatly simplified. For some common sections, M = Mp, when D > h. For example, for D =
h, we note that M = 0.94Mp for curved beams with rectangular sections and M = 0.96Mp for
curved beams with circular sections. However, for curved beams with T-sections, M may be
greater than Mp. Other exceptions are curved beams with I-sections and box-sections, for
which D should be greater than 2k for M to be approximately equal to Mp.

9.7.1 Fully Plastic Versus Maximum Elastic Loads
for Curved Beams

A linearly elastic analysis of a load-carrying member is required to predict the load—
deflection relation for linearly elastic behavior of the member up to the load Py that ini-
tiates yielding in the member. The fully plastic load is also of interest since it is often con-
sidered to be the limiting load that can be applied to the member before the deformations
become excessively large.

The fully plastic load Pp for a curved beam is often more than twice the maximum
elastic load Py. Fracture loads for curved beams that are made of ductile metals and sub-
jected to static loading may be four to six times Py. Dimensionless load—deflection experi-
mental data for a uniform rectangular section hook made of a structural steel are shown in
Figure 9.11. The deflection is defined as the change in distance ST between points S and 7 on
the hook. The hook does not fracture even for loads such that P/Py > 5. A computer program
written by J. C. McWhorter, H. R. Wetenkamp, and O. M. Sidebottom (1971) gave the pre-
dicted curve in Figure 9.11. The experimental data agree well with predicted results.

As noted in Figure 9.11, the ratio of Pp to Py is 2.44. Furthermore, the load-
deflection curve does not level off at the fully plastic load but continues to rise. This
behavior may be attributed to strain hardening. Because of the steep stress gradient in the
hook, the strains in the most strained fibers become so large that the material begins to
strain harden before yielding can penetrate to sufficient depth at section BC in the hook to
develop the fully plastic load.
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0 224 374 6 8 10 12
0 12 20 40 60 80 100 120

Ratio of deflection to maximum elastic deflection

FIGURE 9.11 Dimensionless load-deflection curves for a uniform rectangular section hook

made of structural steel.

The usual practice in predicting the deflection of a structure at the fully plastic load is
to assume that the structure behaves in a linearly elastic manner up to the fully plastic load
(point @ in Figure 9.11) and multiply the deflection at this point by the ratio Pp/Py (in this
case, 2.44). In this case, with this procedure (Figure 9.11) the resulting calculated deflection
[approximately calculated as 2.44(2.4) = 5.9] is greater than the measured deflection.

Usually, curved members such as crane hooks and chains are not subjected to a suf-
ficient number of repetitions of peak loads during their life for fatigue failure to occur.
Therefore, the working loads for these members are often obtained by application of a fac-
tor of safety to the fully plastic loads. It is not uncommon to have the working load as
great as or greater than the maximum elastic load Py.

PROBLEMS

Section 9.2

9.1. A curved beam has the T-shaped cross section shown in
Figure P9.1. The radius of curvature to the inner face of the
flange is 20 mm. The maximum allowable circumferential
stress has a magnitude of 250 MPa. Determine the magnitude
of the bending moment that may be applied to the beam.

9.2. A curved steel bar of circular cross section is used as a
crane hook (Figure P9.2). The radius of curvature to the inner
edge of the bar is r and the bar has diameter d.

a. Determine the maximum tensile and compressive stresses at
section A-A in terms of load P, radius r, and diameter d.

b. The maximum allowable design tensile stress at section A—A
is 375 MPa. Determine the maximum allowable load P, for a
radius 7 = 75 mm and a diameter d = 50 mm.

9.3. In a redesign of the aircraft beam of Example 9.2, the beam
is replaced by a beam with the cross section shown in Figure
P9.3.
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40 mm {

!4—20 mmﬁhls mm =

FIGURE P9.1

FIGURE P9.2

25 mm
.L—/\/— 1470 mm —>}<«—>}<—50 mm —»’

| T B
. 25 mm
I 50 mm —X—

i 25 mm
i ¥

FIGURE P9.3

a. Rework Example 9.2 with the new cross section.
b. Compare the results to those of Example 9.2.
¢. Comment on the worthiness of the redesign.

9.4. Rework Example 9.4 assuming that the pin exerts a uni-
form pressure p on the hook at radius 7, for 0 < 8 < =. Compare
the results to those of Example 9.4.

9.5, The frame shown in Figure E9.1 has a rectangular cross
section with a thickness of 10 mm and depth of 40 mm. The
load P is located 120 mm from the centroid of section BC. The
frame is made of steel having a yield stress of Y = 430 MPa.
The frame has been designed using a factor of safety of SF =
1.75 against initiation of yielding. Determine the maximum
allowable magnitude of P, if the radius of curvature at section
BCis R =40 mm.

9.6. Solve Problem 9.5 for the condition that R = 35 mm.

PROBLEMS

9.7. The curved beam in Figure P9.7 has a circular cross section
50 mm in diameter. The inside diameter of the curved beam is
40 mm. Determine the stress at B for P = 20 kN.

’

FIGURE P9.7

9.8. Let the crane hook in Figure E9.3 have a trapezoidal cross
section as shown in row (c) of Table 9.2 with (see Figure P9.8)
a =45 mm, ¢ = 80 mm, b; = 25 mm, and b, = 10 mm. Deter-
mine the maximum load to be carried by the hook if the work-
ing stress limit is 150 MPa.

E = I
10 mm 25 mm [
i I |

FIGURE P9.8

9.9. A curved beam is built up by welding together rectangular
and elliptical cross section curved beams; the cross section is
shown in Figure P9.9. The center of curvature is located 20 mm
from B. The curved beam is subjected to a positive bending
moment M, . Determine the stresses at points B and C in terms
of M,.

15 mm |

.

f'© B 30mrn|

‘—I_ |
.

|<—30 mm —ste—i= -
15 mm 20 mm

——-a-|

FIGURE P9.9

9.10. A commercial crane hook has the cross-sectional dimen-
sions shown in Figure P9.10 at the critical section that is sub-
jected to an axial load P = 100 kN. Determine the circum-
ferential stresses at the inner and outer radii for this load.
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31.0 mm
13.0 mm l<—~ 85.0 mm —>{<«—>«65.0 mm
|

63.0 mm [Aq)

l
I
102.0 mm |
|
|

FIGURE P9.10

Assume that area A, is half of an ellipse [see row (/) in Table
9.2] and area A; is enclosed by a circular arc.

9.11. A crane hook has the cross-sectional dimensions shown in
Figure P9.11 at the critical section that is subjected to an axial
load P = 90.0 kN. Determine the circumferential stresses at the
inner and outer radii for this load. Note that A; and A; are
enclosed by circular arcs.

1.59 mj

10.96 mm

13[.79 mm 28.00 mm

[—— 49.62 mm |

Ay

40 mm

|
;
|
|
|
|
i

FIGURE P9.11

9.12. The curved beam in Figure P9.12 has a triangular cross
section with the dimensions shown. If P = 40 kN, determine the
circumferential stresses at B and C.

Section 9.3

9.14. Determine the distribution of the radial stress o,, in sec-
tion BC of the beam of Example 9.1. Also determine the maxi-
mum value of ¢, and its location.

9.15. Determine the magnitude of the radial stress o, in section
BC of Figure P9.12 at a radial distance of 30 mm from point B.

9.16. For the curved beam in Problem 9.9, determine the radial
stress in terms of the moment M, if the thickness of the web at
the weld is 10 mm.

9.17. Figure P9.17 shows a cast iron frame with a U-shaped
cross section. The ultimate tensile strength of the cast iron is
0, =320 MPa.

a. Determine the maximum value of P based on a factor of
safety SF = 4.00, which is based on the ultimate strength.

b. Neglecting the effect of stress concentrations at the fillet at
the junction of the web and flange, determine the maximum
radial stress when this load is applied.

45 mm /
P +

l-'--lED mm-»|

FIGURE P9.12

9.13. A curved beam with a rectangular cross section strikes a
90° arc and is loaded and supported as shown in Figure P9.13.
The thickness of the beam is 50 mm. Determine the hoop stress
Ogg along line A-A at the inside and outside radii and at the
centroid of the beam.

A

l+—500 mm —={=—500 mm-+{

FIGURE P9.13

¢. Is the maximum radial stress less than the maximum circum-
ferential stress?

240 mm_|

e —

II = __ 30 mm
180 mm
_+_ e _ - 30 mm

- |

6[5 mm

-

|

FIGURE P9.17
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9.18. A T-section curved beam has the cross section shown in
Figure P9.18. The center of curvature lies 40 mm from the
flange. If the curved beam is subjected to a positive bending
moment M, = 2.50 kN * m, determine the stresses at the inner
and outer radii. Use Bleich’s correction factors. What is the
maximum shear stress in the curved beam?

-— 60 mm —={

! 40 mm
! «—10 mm
— .

| A
| 40 mm 10 mm
| 4
| Y

FIGURE P9.18

9.19. Determine the radial stress at the junction of the web and
the flange for the curved beam in Problem 9.18. Neglect stress
concentrations. Use the Bleich correction.

Section 9.5

9.22. If moment M, and axial force N are applied simulta-
neously, the strain-energy density resulting from these two
actions is

au = %Mxmd0+ %NEeeRdO

where @ is given by Eq. 9.10 and €, is found from Eq. 9.3
with r = R. Using this expression for strain-energy density,
derive Eq. 9.31.

9.23. The curved beam in Figure P9.23 is made of a steel (£ =
200 GPa) that has a yield stress ¥ = 420 MPa. Determine the mag-
nitude of the bending moment My required to initiate yielding in
the curved beam, the angle change of the free end, and the horizon-
tal and vertical components of the deflection of the free end.

9.24. Determine the deflection of the curved beam in Problem
9.7 at the point of load application. The curved beam is made of
an aluminum alloy for which £ = 72.0 GPa and G = 27.1 GPa.
Letk=13.

9.25. The triangular cross section curved beam in Problem 9.12
is made of steel (E = 200 GPa and G = 77.5 GPa). Determine

Section 9.6

9.27. The ring in Figure P9.27 has an inside diameter of
100 mm, an outside diameter of 180 mm, and a circular cross
section. The ring is made of steel having a yield stress of ¥ =
520 MPa. Determine the maximum allowable magnitude of P if
the ring has been designed with a factor of safety SF = 1.75
against initiation of yielding.

PROBLEMS

9.20. A load P = 12.0 kN is applied to the clamp shown in Figure
P9.20. Determine the circumferential stresses at points B and C,
assuming that the curved beam formula is valid at that section.

0
= 76 mm .

|- 36 mm -

i
B

36 mm

| Y
| Y
—= 22 mm [+

[ 68 mm -

—=|

(8]
FIGURE P9.20

9.21. Determine the radial stress at the junction of the web and
inner flange of the curved beam portion of the clamp in Prob-
lem 9.20. Neglect stress concentrations.

30 mm
f—a] %

60 mm

FIGURE P9.23

the separation of the points of application of the load. Let
k=1.5.

9.26. Determine the deflection across the center of curvature of
the cast iron curved beam in Problem 9.17 for P = 126 kN. E =
102.0 GPa and G = 42.5 GPa. Let k = 1.0 with the area in shear
equal to the product of the web thickness and the depth.

9.28. If E =200 GPa and G = 77.5 GPa for the steel in Problem
9.27, determine the deflection of the ring for a load P = 60 kN.
Letk=1.3.

9.29. An aluminum alloy ring has a mean diameter of 600 mm
and a rectangular cross section with 200 mm thickness and a
depth of 300 mm (radial direction). The ring is loaded by
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FIGURE P9.27

diametrically opposed radial loads P = 4.00 MN. Determine the
maximum tensile and compressive circumferential stresses in
the ring.

Section 9.7

9.32. Let the curved beam in Figure 9.10 have a rectangular
cross section with depth & and width b. Show that the ratio of
the bending moment M for fully plastic load Pp to the fully
plastic moment for pure bending Mp = Ybh*/4 is given by the
relation
M _4D | 4" D"
M, h PR

9.30. If E = 72.0 GPa and G = 27.1 GPa for the aluminum alloy
ring in Problem 9.29, determine the separation of the points of
application of the loads. Let k = 1.5.

9.31. The link in Figure P9.31 has a circular cross section and is
made of a steel having a yield stress of Y = 250 MPa. Determine
the magnitude of P that will initiate yield in the link.

G

FIGURE P9.31

9.33. Let the curved beam in Problem 9.5 be made of a steel
that has a flat-top stress—strain diagram at the yield stress ¥ =
430 MPa. From the answer to Problem 9.5, the load that ini-
tiates yielding is equal to Py = SF(P) = 6.05 kN. Since D = 3h,
assume M = Mp and calculate Pp. Determine the ratio Pp/Py.
9.34. Let the steel in the curved beam in Example 9.8 be
elastic—perfectly plastic with yield stress Y = 280 MPa. Deter-
mine the fully plastic moment for the curved beam. Note that
the original cross section must be used. The distortion of the
cross section increases the fully plastic moment for a positive
moment.
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